Lewis Structures

Lewis structures are a simple and the most common way we represent molecules. We show electrons around the atoms with dots:

Lewis structures of atoms

The number of dots equal to the number of valence electrons an element has. The number of valence electrons correspond to the group in which you find the element. Thus, B has 3 valence electrons, C has 4, N has 5, O has 6, and F has 7. You add those electrons onto the atom till you have four electrons. After you get four, you start coupling electrons to make electron pairs. This way, N will have 1 electron pair, O will have 2, and F will have 3.

According to VBT, only the unpaired electrons can participate in bonding. Thus, if we go back to our Lewis structures of the elements above, we can see that:

valency of elements

Knowing how many bonds each element typically makes will help you building the molecules out of the elements like legos building blocks!

Bonding Patterns in Neutral Organic Molecules

So, using the valency of the elements from above, we can make the following building blocks:

Each line represents a bond. Remember, that each bond is 2 electrons, so to make a bond, the other element needs to provide an electron as well. Let’s look at a few examples:

methane lewis structure

In this molecule, we have five building blocks. The only way to make a molecule out of those building blocks is to have the carbon in the middle and have the four hydrogens attached to it. If we add an extra atom into our molecule, we get the following building blocks:

methanol lewis structure

In this case, again, there’s only one way you can build a molecule from these building blocks. HOwever, if you start adding more atoms, you run into a situation when you can make more than one structure from your building blocks:

ethanol vs dimethyl ether lewis structure

The two options you get for this combination of atoms, are called constitutional isomers. Constitutional isomers have different structure, names, and properties. However, they do have the same molecular formula.

Lewis Structures with Double & Triple Bonds

When you put your building blocks together but still have unconnected bonds, you can make double or triple bonds or even cyclic compounds. For instance, let’s look at the following molecule:

In this case, you have 2 unconnected bonds, so we’ll connect them together to make a C=O bond. The following two molecules are examples of molecules with a carbon-carbon double and triple bond:

The more atoms you have in the molecule, the more possible constitutional isomers you can get. This number grows exponentially! So once we have a dozen atoms in the molecule, you’re looking at thousands of possibilities!

Do you want to learn more and get a ton of practice questions with instant feedback? Then check out my
Organic Chemistry Course!

Leave a Comment

Your email address will not be published. Required fields are marked *